
   
 

       

 

 

  
 

     
  

   
   

 
       

    
     

     
       
  

 
  

  
      

       
   

 
    

        
     

  
 

                                                           
   

  
    

 
    

  
    

   
     

   
    

  
    

  
           

  
 

     

Speed and Latency in Treasury and e-Mini Futures Contracts – Part 2 

Raymond P. H. Fishe, Richard Haynes, and Esen Onur* 

I. Introduction 

Fast trading is a focus of regulators and many industry groups. The use of computer 
algorithms, co-location services, technological improvements in exchanges’ matching systems, 
and high-speed microwave networks accelerates order entry, cancellation rates, execution 
speeds, and matching frequencies for equities and derivative markets.  Both the Commodity 
Futures Trading Commission (CFTC) and the U.S. Securities and Exchange Commission (SEC) 
have examined faster traders and automated trading strategies to better understand their effects 
on regulated markets.1 Although academic research exists on the effects of speed, latency and 
high frequency trading, much of this research is limited by a lack of detailed, participant level, 
proprietary data.2 Many issues related to speed and latency cannot be fully addressed without 
individual order and trade data; this paper complements prior research by using account-level 
audit trail data. 

The purpose of this research is to provide trader based information on both the speed of 
trading and message latency in the Treasury futures complex and the e-Mini futures contract. 
This is Part II of our analysis of speedy traders. In this study we examine message latency, 
defined below, in trader systems and strategies. Part I of this analysis examined the speed or 
rapidity of trading across a set of participant types. 

Latency refers to how long it takes to reach a resolution from a particular starting point; 
latency is quoted in units of time and may be measured in a number of ways depending on the 
latency measure of interest. For financial markets, there are several important categories of 
latency, each of which may have implications for trading activity: 

* Fishe: Patricia A. and George W. Wellde, Jr. Distinguished Professor of Finance, Department of Finance, Robins 
School of Business, University of Richmond, Richmond, VA 23173. Tel: (+1) 804-287-1269. Email: 
pfishe@richmond.edu. Haynes: U.S. Commodity Futures Trading Commission, Washington, D.C. 20581. Tel: (+1) 
202-418-5000. Email: rhaynes@cftc.gov. Onur: U.S. Commodity Futures Trading Commission, Washington, D.C. 
20581. Tel: (+1) 202-418-5000. Email: eonur@cftc.gov. Tel: (+1) 202-418-5000. The research presented in this 
paper was co-authored by Raymond Fishe, a CFTC limited term-consultant, and Richard Haynes and Esen Onur, 
who are both CFTC employees, in their official capacities with the CFTC. The Office of the Chief Economist and 
CFTC economists produce original research on a broad range of topics relevant to the CFTC’s mandate to regulate 
commodity future markets, commodity options markets, and the expanded mandate to regulate the swaps markets 
pursuant to the Dodd-Frank Wall Street Reform and Consumer Protection Act. These papers are often presented at 
conferences and many of these papers are later published by peer-review and other scholarly outlets. The analyses 
and conclusions expressed in this paper are those of the authors and do not reflect the views of other members of the 
Office of Chief Economist, other Commission staff, or the Commission itself. All errors and omissions, if any, are 
the authors’ own responsibility.  First draft: September 2016. 
1 On March 25, 2015, the SEC closed an exemption that allowed proprietary trading firms—many are HFTs—to 
actively trade without being members of a National Securities Association and therefore subject to the regulatory 
arm of the industry (FINRA).
2 Menkveld (2016) provides a recent review of HFT research as it relates to market quality metrics. 
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1.	 Message origination latency—how long it takes a trader or algorithm to initiate or
 
transmit a message to a trading platform after the message process has reset; that
 
is, the process starts de novo and then a signal (or set of signals) arises that is
 
sufficient to cause a new message.
 

2.	 Communications latency—how long it takes the message to reach the intended 

trading platform after departing the originating system.
 

3.	 Trading platform latency—how long it takes the trading platform to process and
 
respond to the message. The response may be dependent on message type; for
 
instance, a confirmation-of-receipt response may be expected to have much lower
 
latency on average than an execution response. Specifically, the latter response 

generally involves limit order resting times on an order book.
 

4.	 Public broadcast latency—how long it takes for post-message information to be
 
broadcast from the trading platform to the trading public, assuming that such 

messages contain information intended for public broadcast.
 

Message origination latency arises because a trading strategy waits until a signal (or a 
marginal signal in a sequence of signals) causes it to generate a new message. For algorithmic 
strategies, message origination latency is expected to be well-defined and consistent across 
events, as the code to implement the algorithm embeds all of the necessary information to define 
when to originate a message. For cognitive strategies, there may not be a clear way to measure 
what signals cause a human trader to react and originate a message because idiosyncratic 
responses to signals may cause timing differences or may not coincide with sets of very similar 
signals. 

Understanding message origination latency may also require tracking not just market signals, 
but signals related to a trader’s prior actions—so-called feedback signals. Specifically, 
confirming that a previous order has executed may be a sufficient signal to initiate a new 
message to a trading platform. Thus, strategies that rely on market-generated data for sufficient 
signals will in turn generate messages whose frequency is related to specific market data 
frequencies or patterns. 

Communications latency is generally two sided. It involves the time it takes a message to 
travel from its origin to the trading platform and the time to receive a response after the trading 
platform has confirmed the validity of the message. 3 Each side of this exchange may have 
different latency times as communications routes may vary. Geographical location is a key 
component of this latency measure.  Traders with co-located facilities will have shorter 
communications latency times than other, more distant traders. 

Trading platform latency may be decomposed into two separate types of latency. 4 The first is 
the time the platform takes to pre-process a message (e.g., validity checks) and initiate a 
confirmation to the originating entity. This is typically embedded in communications latency. In 

3 While not common, it is possible that the trading platform can reject an order instead of confirming it. One 
scenario in which this happens is when the trading platform prevents irrationally priced or sized limit orders from 
populating the order book and rejects them.
4 For a discussion of trading platform latency, see Kirilenko and Lamacie, “Latency and Asset Prices,” Working 
paper, MIT Sloan School of Management, 2015. 
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times of extreme market activity, pre-processing may slow, as other messages and their related 
processing delays a normally near immediate confirmation response. These delays may also 
occur in public broadcast latency. 

The second type of trading platform latency is the time the matching engine takes to act on a 
message. For market-type orders (e.g., marketable limit or market orders), this is the time it takes 
to confirm a match on the existing book, typically less than a millisecond. These times may 
increase if the matching process is more complicated, such as for trades with multiple legs or for 
trades that make use of functionality such as implied spread technology.  For messages such as 
modifications or cancellations of existing orders, this is the time it takes to adjust or remove an 
existing order in the electronic order book.5 For these order types, latency does not generally 
depend on the actions of other market participants. 

In contrast, for a resting limit order message, matching engine latency is the time it takes to 
execute an order by finding a match in the market. In this case, the behavior of other participants 
affects latency as the order may sit on the book until sufficient execution or cancel volume 
moves it to the front of the queue. In effect, the latency associated with execution time may be 
quite long if the limit price is set away from the current market price or very short if the order is 
placed to replenish exhausted liquidity at the best price.6 

Public broadcast latency focuses on how long it takes for the information produced by a 
matching engine to be revealed to the overall market.  This is mostly a question of the difference 
in time between execution and post-trade transparency, but it may also include how quickly the 
order book updates when depth increases or decreases after new orders, modifications, or 
cancellations. A possible regulatory issue arises if public broadcast latency is meaningfully 
different between selected market participants.7 For example, if a trader receives confirmation of 
an execution before the overall market, then that trader may possibly gain by reacting before the 
rest-of-the-market can process the new information. 

These four types of latency have been affected by technology and regulatory changes during 
the past two decades. On net, communications, trading platform, and public broadcast latency 
times have decreased over this period, in many cases to a significant extent. With the growth of 
algorithmic trading, message origination latency also appears to have decreased, but there is 
more ambiguity inherent in understanding message origination times. Specifically, did message 
origination latency decrease because algorithms, co-location, and direct connections endowed 
traders with faster methods of order entry, or did it decrease because the signals generating such 
orders increased in frequency (possibly due to technology external to markets), and thereby 
increased demand for algorithms, co-location and direct connections? 

5 When orders are modified or cancelled, trading platform latency may increase due to the need to update implied
 
spreads in the matching engine.

6 For orders away from the market price, matching engine latency includes the possibility that the order does not 

execute, which may significantly lengthen average latency times if there are many such orders on the book.

7 See Scott Patterson, Jenny Strasburg and Liam Pleven, “High-Speed Traders Exploit Loophole,” The Wall Street
 
Journal, May 1, 2013. (http://www.wsj.com/articles/SB10001424127887323798104578455032466082920). 
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The analysis below focuses on message origination latency—specifically, the latency tied to 
feedback signals, such as a trade confirmation message. Our goal is to offer empirical data that 
may approximate message origination latency. We say ‘approximate’ because this analysis is 
subject to the limitation that we do not know exactly what signals generate trader responses in 
our sample. As such the analysis embeds several assumptions about the signal sequence 
generating responses in order to establish start and end times for latency calculations. In addition, 
because we use messages from the market and do not incorporate external signals, we may do a 
poor job explaining the latency of traders who rely significantly on external signals. 

II. Message Origination Latency 

Message origination latency cannot be precisely measured without knowledge of the trader’s 
strategy, including the timing and nature of the signals necessary to implement the strategy. In 
effect, we need a detailed flowchart of either the algorithms used for trading or specific 
instructions offered by human traders. With this caveat, we try to determine how message 
origination latency may be estimated from exchange-based data. Clearly, these data are only a 
subset of the signals available to both algorithmic and human traders, and so may be provide a 
bound on latency. 

The essence of latency is that it is a measure of time between two, potentially related, events. 
In our context, a signal (or signals) begins the message origination process and then the actual 
message creation ends the process; this establishes some ambiguity on what “signal” should be 
chosen to define the beginning of this time interval. We posit that message origination latency 
may be approximated by analyzing how long a trader takes to act after receiving an “exit” signal 
from an existing order. Specifically, both execution and cancellation confirmations represent exit 
signals in which a trader’s order is removed from the matching engine. Our premise is that these 
exit signals represent an approximate starting point for the trader’s (or algorithm’s) strategy. 
The strategy then processes other signals until sufficient information is received that causes a 
new order message. From this view, message origination latency is how long it takes for a new 
order message to be transmitted after an exit signal has been received. 

Figure 1: Illustration of Message Origination Latency 

Execution Signals for Traders (A,B) and the Overall Market (m) 

A AB B 
m m mm m mm m mm mmm m

Execution: 
Trader A (X a) 

Trader B (Xb) 

Order Entry: 
Trader A (O a) 

Trader B (Ob) 

O a ObObXb Xb 
O a X a 

X a 
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Figure 1 illustrates message origination latency based on the assumption that an execution 
signal starts the process that leads to a new order message. Two traders are shown in the figure, 
labeled “A” and “B”. Execution signals provided are marked by vertical dashed lines.  All of 
these are public signals, except that the two traders know when their trade orders are confirmed. 
This confirmation indicates an exit from the market for their previous order. The latency times (t) 
of each trader are marked depending on when they re-enter the market with a new order. We 
make no distinction between the buy and sell sides for this illustration, but do emphasize the 
differences in types of messages (i.e., order entry, cancellation, modification, and execution). 
The figure shows that Trader B appears to act after receiving the next (public) trade execution 
signal from the market, which suggests a low latency (i.e. a low threshold or simple rule for 
generating a new order) for this trader’s message origination strategy. Trader A appears less 
responsive to market execution signals, initiating new orders only after five and eight execution 
signals, respectively. In effect, Trader A’s message origination latency may be a function of 
other, possibly private signals, which may not be apparent in our order book-derived sample. 

Note that cancellations also create exit signals and represent a significant proportion of 
message traffic. Traders may use cancellations for many purposes, such as to clear out stale limit 
orders, to search for hidden liquidity when tied to more aggressive quoting, to avoid trading with 
informed traders, or to avoid being adversely selected as price moves away from their resting 
limits. Unlike execution signals that confirm limit order matches, cancellations do not involve 
the actions of other traders. In effect this exit message and the new order message are both 
created by the trader’s (or algorithm’s) independent actions. Thus, message origination latency 
derived from cancellations may show more consistency at the trader level than the same latency 
using execution messages. 

III.Hazard Model 

Figure 1 also suggests a modeling strategy for message origination latency. Because we seek 
to explain how long it takes for a trader to submit a new order after an existing order has exited 
the market, the problem is analogous to those examined using survival analysis.8 Cox (1992) 
developed a proportional risk model for survival analysis that has been shown to be flexible for 
many different latency applications. The Cox model assumes that covariates have a 
multiplicative effect on the hazard function.9 This approach requires a specification of the hazard 
function (or rate). Specifically, if 𝑡𝑡𝑖𝑖,𝑔𝑔 represents the time between order exit and order entry, 
where g = 1,…,Gi indexes the number of observable exit-to-reentry gaps for trader i, then a Cox-
type hazard model with covariates may be specified as: 

′𝜆𝜆 𝑡𝑡; 𝑥𝑥𝑖𝑖,𝑔𝑔  = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒 𝒙𝒙𝑖𝑖,𝑔𝑔𝜷𝜷 , (1) 

8 See Kalbfleisch and Prentice (2002) for a discussion of survival time models and examples.
 
9 The hazard function specifies the instantaneous failure rate at time t given that there is no failure between the 

initial time and t. This function equals the density of failure time divided by the probability of survival beyond time
 
t, the latter is known as the survivor function.
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where 𝜆𝜆 𝑡𝑡; 𝑥𝑥𝑖𝑖,𝑔𝑔  is the hazard function for the latency time between order exit and order entry,
′ which depends on an arbitrary baseline hazard ( 𝜆𝜆0 ), and covariates ( 𝒙𝒙𝑖𝑖,𝑔𝑔𝜷𝜷 ) that have a 

multiplicative effect via the exponential specification. The covariates examined here are 
variables that define the trader, such as manual or algorithmic, and variables that define 
information (or signals) arising during the gap between exit and reentry.  Some covariates are 
time dependent, so we adjust our estimation methods to allow for such dependence. 

The coefficient vector, 𝜷𝜷, in the Cox model is estimated using partial information maximum 
likelihood methods. Because of proportionality, the baseline hazard is not involved with these 
estimates.  We use the PHREG routine in SAS to estimate these coefficients. 

The covariates we examine are those that would be known to the market or closely 
approximated during a gap between an exit and re-entry of a new order. Specifically, traders 
would know the volume of trading, and from updates to the book, they may determine buy- and 
sell-side flows onto and off of the book. We measure these factors using both counts of messages 
by type as well as the quantities being adjusted by these messages. We consider these covariates 
as information signals received by the market participants. Time dependencies arise because the 
longer the gap, the greater the number of messages, on average, within the gap. To adjust for 
time dependence, we repeatedly sample selected covariates within the gap. 

IV. Data 

The data studied here are for the ten- and thirty-year treasury futures complex and the E-Mini 
futures contract. We analyze order book data for proprietary accounts on one trading day, August 
1, 2014. On this day, there was a morning release by the BLS of July employment data. Those 
data showed the U.S. added 209,000 non-farm payroll jobs and the unemployment rate increased 
to 6.2%.10 Expectations were for 230,000 jobs and the unemployment rate unchanged at 6.1%. 
This release may have added some volatility to trading during this day, so that is a caveat to our 
results. 

The data sampled are only for the December 2014 expiration month, which was an active 
month at this time for all of these products. For each futures contract, participant, entry-type 
(algorithmic or manual), and customer type (proprietary or customer-initiated), we identified the 
last execution and last cancellation prior to a new order. The confirmation timestamp on this last 
message marks the beginning of a signal-processing gap for that participant. That is, this is the 
time of exit from the market and by assumption the beginning of a new strategy sequence that 
processes signals before re-entry. Re-entry to the market occurs when a new order is submitted, 
and we use the time stamp for CME receipt of the new order to mark this re-entry time. The 
difference between these re-entry and exit times we define as the message origination latency for 
each participant. 

10 See Myles Udland, “Jobs disappoint, unemployment rate rises to 6.2%,” Business Insider, August 1, 2014. 
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Table 1 provides summary statistics on these sample data. This table reports information as 
averages and standard deviations across all message origination gaps. Thus, these data may be 
skewed towards latency times associated with participants who have disproportionately more gap 
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Table 1
 
Summary Statistics for "Message Origination Latency" Events
 

Summary data are presented for the average and standard deviation of covariates measured in the time gap between the last execution and the next new order entry (Panel A) and the 
last cancellation and the next new order entry (Panel B). This time gap is hypothesized to approximate message origination latency. These data only include participants who acted for 
their own accounts, so-called proprietary traders. The data are separated by algorithmic and manual-entry accounts for three futures contracts: E-mini, Ten-year Treasury, and 30-year 
Treasury.The data are for the December 2014 expiration and all orders and trades on August 1, 2014. 

E-Mini Futures Contract Ten-Year Treasury Note Futures Thirty-Year Treasury Bond Futures 
Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry 

Signal Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Panel A:  Data for Message Origination Gaps Measured from Last Execution to Next New Order Entry 

Gap Latency (Seconds) 8.52 35.5 57.1 117.3 11.91 44.7 66.4 116.1 11.16 44.2 57.9 111.7 
Cancel Count 436.6 1827.5 3241.8 6900.1 381.6 1490.6 2960.8 5575.6 305.9 1256.4 2110.2 4402.5 
Execution Count 423.2 1777.9 3161.8 6883.8 335.1 1181.1 2413.2 4631.0 176.5 671.7 1157.8 2428.9 
New Order Count 647.2 2725.5 4845.5 10437.8 524.4 2026.8 4066.6 7722.4 392.3 1597.0 2706.8 5659.0 
Individual Cancel Cnt 0.30 1.08 0.15 0.64 0.26 1.11 0.12 0.48 0.26 1.10 0.13 0.48 
Begin Gap Inventory -3.23 186.2 11.3 362.2 -1.89 162.5 -29.4 468.7 0.55 58.2 -42.9 148.6 
Abs(Inventory) 55.3 177.8 101.1 348.0 54.0 153.3 127.1 452.1 23.3 53.4 79.6 132.6 
Sign of Inventory 0.57 0.49 0.53 0.50 0.55 0.50 0.53 0.50 0.58 0.49 0.48 0.50 
Number of Gaps 268,146 7,778 122,848 2,858 88,873 1,402 

Panel B:  Data for Message Origination Gaps Measured from Last Cancellation to Next New Order Entry 

Gap Latency (Seconds) 3.59 19.5 60.8 120.5 9.72 37.6 63.2 128.7 9.59 37.6 26.4 79.7 
Cancel Count 168.2 1024.4 3429.4 7261.5 268.4 1230.5 2122.3 4865.7 216.6 985.6 734.4 2760.3 
Execution Count 162.7 915.5 3112.9 6621.4 220.7 1027.8 1636.7 3912.6 124.9 543.3 400.6 1533.9 
New Order Count 247.2 1484.1 5004.0 10630.1 358.6 1677.4 2837.0 6588.8 272.4 1261.9 927.7 3544.5 
Individual Execution Cnt 0.20 0.91 0.45 3.12 0.17 0.97 0.29 2.51 0.15 0.79 0.03 0.26 
Begin Gap Inventory -2.58 136.6 -7.2 331.4 1.75 145.2 -26.0 545.7 1.39 58.9 -41.4 133.5 
Abs(Inventory) 38.5 131.1 75.0 322.8 40.3 139.5 102.0 536.7 18.5 55.9 46.8 131.7 
Sign of Inventory 0.62 0.49 0.63 0.48 0.65 0.48 0.75 0.44 0.66 0.47 0.73 0.44 
Number of Gaps 385,656 2,645 163,156 1,563 139,769 2,159 
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events than others. However, even with such skewness, no single trader represents more than 
40% of these data. Panel A in the table shows results for the execution-to-new-order sequence 
and Panel B shows results for the cancellation-to-new-order sequence. The number of gaps 
analyzed is reported at the bottom of each panel. For algorithmic participants there are more 
cancel-to-new-order sequences for each futures contract, while this is only true for 30-year 
treasury futures for manual participants.  Intuitively, this would imply that message  origination 
latency for the cancel-to-new-order sequences is less than that of the execution-to-new-order 
sequence. The means of the gap latency measures in each panel confirm this observation. 

Table 1 also shows summary results for covariates used in the hazard rate analysis (see 
below). These data are measured up to three times during a gap, but the data here are for totals 
over the entire gap length unless otherwise noted. The cancel, execution, and new order count 
variables show smaller averages for algorithmic- than manual-entry participants. This is 
consistent with the smaller average latency for algorithmic gaps. The individual data—execution 
and cancel counts—tend to suggest than algorithmic participants have more activity during the 
gap than manual participants, except for execution counts for E-mini and Ten year treasuries. 
Finally, the inventory data show higher absolute averages for manual- than algorithmic-entry 
participants. 

V. Empirical Analysis 

We begin by providing a more detailed analysis of how long participants in these markets 
wait before re-entering an order after an exit message signal. The distribution that describes this 
behavior is known as a survival curve. Figure 2 shows survival curves for traders in the e-Mini 
market, where participants are grouped by order entry (manual or algorithmic) and customer type 
(proprietary or customer-initiated order). These data are for message origination latency gaps 
measured from an execution message to a new order by participant. The upper panel shows 
survival curves for all observations while the lower panel bootstraps the data into 500 equal-
weighted samples such that each participant is observed once in every sample. The bootstrap 
method removes the excess weight given to participants who are very active in the market; that 
is, high frequency traders. 

The solid line crossing both graphs in Figure 2 highlights the 50% cutoff for each group. This 
line identifies the latency time (horizontal axis) when one-half of observed new orders have been 
submitted after receiving a prior execution message. Both panels show that the 50% latency 
cutoff implies that algorithmic-entry traders are quicker to respond versus manual-entry traders 
after an execution signal. The ‘all’ observation curves in the upper panel show algorithmic 
proprietary traders are the quickest group with 50% of the observations responding with new 
orders in less than 200 milliseconds. In contrast it takes manual proprietary traders over 9 
seconds on average for one-half of the observations to respond. 

The lower panel in Figure 2 emphasizes the problem created if all observations are collected 
into a single sample for analysis. This panel plots survival curves when each participant is 
equally weighted. There are meaningful differences in execution-to-new-order latency between 
participants as comparing the upper and lower panels indicates. Moreover, the groups used here 
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(manual versus algorithmic) offer only limited controls for this heterogeneity. This point is clear 
from comparing the intersections of the 50% cutoff line in the lower panel to those in the upper 
panel. The cutoff line does not cross either manual-entry survival curve in the lower panel, so the 
cutoffs for those participant groups exceed the 15 second limit on the horizontal axis. More 
significantly, the new cutoff for the algorithmic proprietary group increases latency time by a 
factor of 25 to just over 5 seconds, and by a factor of 4 to nearly 14 seconds for the customer-
based algorithmic group. These results reveal how conclusions about market behavior may be 
meaningfully affected by disproportionate activity levels across participants.  In other words, 
conclusions drawn from all observations will be about the average observation, not the average 
participant. 

Figure 2: Survival Curves for E-Mini Futures: Execution-to-New-Order Latency 
(All observations versus equally-weighted bootstrap sample; Data for August 1, 2014) 

Tables 2 and 3 contain the estimates of our proportional hazard model. Table 2 reports results 
for a latency model of the time between order execution and new order entry. Table 3 shows 
results for the latency time between order cancelation and new order entry. The results are 
grouped by commodity—E-Mini, Ten-year Treasury, and 30-year Treasury futures contracts— 
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Table 2
 
Model of Latency between Order Execution and New Order Entry
 

Proportional hazard regression estimates are shown for a latency model of the time between order execution and new order entry. Models are estimated for E-Mini, Ten-year Treasury, and 30-year Treasury futures 
contracts using only participants trading for their own accounts (Proprietary traders). The models are estimated separately for algorithmic- and manual-entry participants. Covariates measured in the time gap are the 
number of cancellations, executions, and new orders in the entire market excluding the participant identified in the observation. The participant's cancellations within the gap are also included. All of these covariates are 
sampled up to three times--at approximately 20%, 50% and 75% of gap length if sufficiently long and populated--within the gap to measure time dependence. The inventory covariates are measured at the start of the gap 
and do not change for a given participant during the gap. The model is estimated using a partial likelihood function that takes account of time dependent covariates using a bootstrap simulation. The simulation includes 500 
random samples in which a gap for each participant is drawn once for every sample. The simulation gives equal weight to all participants and removes the effect caused by only a few participants having many gaps. The 
table shows the average estimated hazard rate for each covariate, the average p-value of the covariate's estimated coefficient and the 95% confidence interval (95% C.I.) of the hazard ratio. The count of p-values less than 
0.05 is shown for each coefficient in all models. The number of participants in each simulation and McFadden pseudo r-squared are shown at the bottom of the table for each model. 

E-Mini Futures Contract Ten-Year Treasury Note Futures Thirty-Year Treasury Bond Futures 
Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry 

Average of Count of Average of Count of Average of Count of Average of Count of Average of Count of Average of Count of 
Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < 

Signal Variable p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 

Cancel Count 1.0111 474 1.0118 446 1.0152 500 1.0055 156 1.0248 491 1.0218 242 
0.0152 0.0278 0.0004 0.2880 0.0059 0.1924 

(1.0059, 1.0163) (1.0054, 1.0182) (1.0094, 1.0211) (0.9951, 1.0161) (1.0146, 1.0352) (0.9981, 1.0461) 

Execution Count 1.0027 241 0.9999 144 1.0040 352 0.9966 178 1.0118 431 1.0020 85 
0.1827 0.3142 0.1081 0.2723 0.0401 0.3928 

(0.9999, 1.0054) (0.99626, 1.0036) (1.0011, 1.0069) (0.9915, 1.0017) (1.0047, 1.0189) (0.9849, 1.0193) 

Individual Cancel Cnt 0.9976 500 0.9770 500 0.9978 500 0.8771 500 0.9975 500 0.9443 500 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

(0.9973, 0.9978) (0.9729, 0.9811) (0.9975, 0.9980) (0.8572, 0.8976) (0.9972, 0.9979) (0.9305, 0.9584) 

New Order Count 0.9922 419 0.9941 265 0.9878 495 1.0001 119 0.9780 487 0.9862 173 
0.0489 0.1884 0.0037 0.3375 0.0078 0.2648 

(0.9878, 0.9966) (0.9885, 0.9996) (0.9826, 0.9930) (0.9909, 1.0093) (0.9690, 0.9871) (0.9656, 1.0073) 

Inventory if Negative 1.0002 52 0.9991 166 1.0000 27 0.9993 239 1.0001 38 1.0016 151 
0.4866 0.2942 0.5333 0.2142 0.5200 0.3318 

(0.9992, 1.0009) (0.9978, 1.0004) (0.9992, 1.0007) (0.9982, 1.0003) (0.9974, 1.0028) (0.9951, 1.0081) 

Inventory if Positive 0.9998 90 1.0002 97 1.0000 22 0.9994 199 0.9991 77 1.0056 164 
0.4142 0.3574 0.5316 0.2560 0.4309 0.2984 

(0.9986, 1.0009) (0.9993, 1.0012) (0.9994, 1.0007) (0.9973, 1.0015) (0.9956, 1.0025) (0.9976, 1.0136) 

Number of participants 478 235 521 166 379 89 
McFadden R-Sqrd 10.9% 38.2% 6.6% 56.4% 6.9% 47.7% 
McFadden Adj. R-Sqrd 11.0% 38.5% 6.8% 56.9% 7.1% 48.8% 
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Table 3
 
Model of Latency between Order Cancellation and New Order Entry
 

Proportional hazard regression estimates are shown for a latency model of the time between order cancellation and new order entry. Models are estimated for E-Mini, Ten-year Treasury, and 30-year Treasury futures 
contracts using only participants trading for their own accounts (Proprietary traders). The models are estimated separately for algorithmic- and manual-entry participants. Covariates measured in the time gap are the 
number of cancellations, executions, and new orders in the entire market excluding the participant identified in the observation. The participant's executions within the gap are also included. All of these covariates are 
sampled up to three times--at approximately 20%, 50% and 75% of gap length if sufficiently long and populated--within the gap to measure time dependence. The inventory covariates are measured at the start of the gap 
and do not change for a given participant during the gap. The model is estimated using a partial likelihood function that takes account of time dependent covariates using a bootstrap simulation. The simulation includes 500 
random samples in which a gap for each participant is drawn once for every sample. The simulation gives equal weight to all participants and removes the effect caused by only a few participants having many gaps. The 
table shows the average estimated hazard rate for each covariate, the average p-value of the covariate's estimated coefficient and the 95% confidence interval (95% C.I.) of the hazard ratio. The count of p-values less than 
0.05 is shown for each coefficient in all models. The number of participants in each simulation and McFadden pseudo r-squared are shown at the bottom of the table for each model. 

E-Mini Futures Contract Ten-Year Treasury Note Futures Thirty-Year Treasury Bond Futures 
Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry Algorithmic-Entry Manual-Entry 

Average of Count of Average of Count of Average of Count of Average of Count of Average of Count of Average of Count of 
Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < Hazard Ratio/ p-Val < 

Signal Variable p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 p-value/95% C.I. 0.05 

Cancel Count 1.0069 305 1.0065 190 1.0105 413 1.0080 203 1.0077 170 1.0039 38 
0.1363 0.2598 0.0463 0.2337 0.2787 0.4841 

(1.0006, 1.0133) (0.9977, 1.0154) (1.0036, 1.0174) (0.9977, 1.0183) (0.9969, 1.0186) (0.9766, 1.0319) 

Execution Count 1.0014 135 1.0031 186 1.0011 145 1.0031 139 0.9983 68 0.9895 99 
0.3158 0.2549 0.3044 0.3150 0.4292 0.3710 

(0.9974, 1.0053) (0.9983, 1.0078) (0.9985, 1.0037) (0.9974, 1.0088) (0.9901, 1.0065) (0.9619, 1.0181) 

Individual Execution Cnt 0.9980 500 0.9845 500 0.9962 500 0.9703 500 0.9942 500 0.8788 500 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

(0.9976, 0.9984) (0.9805, 0.9886) (0.9956, 0.9968) (0.9611, 0.9797) (0.9932, 0,9952) (0.8318, 0.9291) 

New Order Count 0.9958 155 0.9949 152 0.9929 325 0.9941 178 0.9965 94 1.0068 43 
0.2747 0.2938 0.1021 0.2729 0.3777 0.4510 

(0.9899, 1.0017) (0.9866, 1.0032) (0.9869, 0.9988) (0.9848, 1.0035) (0.9866, 1.0064) (0.9816, 1.0326) 

Inventory if Negative 1.0007 123 1.0025 230 1.0005 118 0.9992 262 1.0014 116 1.0018 104 
0.3475 0.2174 0.3453 0.1959 0.3431 0.3569 

(0.9995, 1.0018) (0.9997, 1.0053) (0.9991, 1.0019) (0.9954, 1.0030) (0.9966, 1.0063) (0.9798, 1.0248) 

Inventory if Positive 0.9996 85 0.9978 200 0.9996 139 1.0005 250 0.9995 79 1.0264 95 
0.3710 0.2727 0.3314 0.1993 0.3540 0.3626 

(0.9983, 1.0009) (0.9944, 1.0012) (0.9985, 1.0007) (0.9954, 1.0056) (0.9957, 1.0032) (0.9811, 1.0756) 

Number of participants 378 123 460 86 353 47 
McFadden R-Sqrd 5.4% 23.9% 5.0% 28.2% 6.6% 51.0% 
McFadden Adj. R-Sqrd 5.1% 23.1% 4.8% 26.9% 6.4% 48.2% 

Page | 12 



   
 

   
  

 
 

      
   

  
      

   
 

 
      

    
  

   
      

    
   

      
 

 
    

    
  

  
  

  
   

      
 

   
    

 
   

   
 

  
 

 
 

 
     

  
  

   

and by algorithmic- or manual-entry participants. These models are also only estimated using 
proprietary trades; there are no customer-initiated trades in these samples. Covariates measured 
in the time gap are the number of cancellations, executions, and new orders in the entire market 
excluding the participant identified in the observation. The participant's cancellations within the 
gap are also included for the models in Table 2, and the participant's executions within the gap 
are included for the models in Table 3. All of these covariates are sampled up to three times—at 
approximately 20%, 50% and 75% of gap length if the gap is sufficiently long and populated— 
within the gap to measure time dependence. The inventory covariates are measured at the start of 
the gap for a given participant. These are divided into positive or negative sides with the variable 
taking a zero value when the sign changes. 

These models are estimated using a bootstrap simulation. The simulation includes 500 
random samples in which a gap for each participant is drawn once for every sample. The 
simulation gives equal weight to all participants, which removes the effect caused by only a few 
participants having many message origination gaps.  Both tables show the average (across 
samples) of the estimated hazard rates for each covariate, the average p-values of the covariate's 
estimated coefficient and the 95% confidence interval (95% C.I.) of the hazard ratio. The count 
of p-values less than 0.05 across samples is shown for each coefficient in all models. The number 
of participants in each simulation, and the McFadden pseudo and adjusted R-squareds are shown 
at the bottom of each model. 

To interpret these results consider the effects of market cancellation counts on new order 
entry in Table 2. This covariate is measured in units of 10 contracts, as are the other market 
covariates (execution and new order counts). The hazard rate for the E-mini algorithmic 
estimates averaged 1.0111 for the algorithmic model with and average p-value of 0.0152, and a 
95% confidence interval of 1.0059 to 1.0163. The fact that this covariate is significant in 474 
(94.8%) of our samples strongly suggests that this variable is meaningful to participant decisions 
within the gap. The average hazard rate of 1.0111 implies that if the market cancellation count 
increases by 10 futures contracts at a given time point then proprietary algorithmic participants 
are 1.11% more likely to submit a new order in the next interval of time after this event. Because 
these market cancellations have reduced the order book queue, new orders placed after the 
cancellation will take less time to execute, ceteris paribus, which provides the greater incentive 
to submit a new order. In the same model, the new order count hazard rate is on average equal to 
0.9922, which implies that if the new order volume increases by 10 futures contracts at a given 
time point, then proprietary algorithmic participants are 0.78% less likely to submit a new order 
in the next interval of time after this event. Again, the behavior of the order book provides a 
possibly explanation for this finding because more new orders by the market lengthens the 
expected resting time on the book, which makes an individual participant less likely to submit a 
new order, ceteris paribus. 

The market-based results in Table 2 indicate that cancel and new order counts appear as 
consistently significant covariates for the message origination latency of algorithmic participants. 
Comparatively, however, the cancel counts of the individual participant are more significant than 
these market-wide covariates. In all 500 samples, this covariate was significant at less than the 
0.0001 level. The estimated hazard rate here implies that participants delay entering new orders 
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if they have cancelled an order within the gap. This is logical, given that the reason to cancel an 
order may also be the reason to delay entering a new order.11 

Except for the E-mini contract, the manual-entry results in Table 2 indicate that these traders 
only consider their own within gap actions as important for latency calculations. Specifically, if 
they have canceled an order within a message origination gap for ten-year treasuries, then in the 
next instant of time they are 12.3% less likely to enter a new order. Interestingly, in Table 3 
where we measure the gap as starting from a cancellation message, the individual actions—in 
this case executions—within the gap is the only significant covariate, with one exception, in 
these simulations for both algorithmic- and manual-entry participants. That is, the activity of the 
market after a cancellation is not particularly relevant to whether a new order is submitted, 
except possibly the cancel count of ten-year treasuries for algorithmic participants. 

What is somewhat surprising about the findings for individual-derived covariates is that such 
variables offer good explanatory power for manual-entry participants. We had expected manual 
participants to be less consistent in their behavior, leading to more difficulty explaining the 
variation in manual participant choices. Instead, the McFadden pseudo R-squareds range from 
23% to 56% for the manual-entry models. In contrast, the algorithmic-entry models show an R-
squared range of 5% to 10.9%, even with more covariates showing statistically significant 
results. We conclude that the manual-entry participants appear to follow a Markov-like property, 
where their immediate last action is a very important determinant of the probability of their next 
action. This property may also be part of an algorithmic-entry strategy, but the relatively low R-
squared for those models suggest that we are not capturing enough of the many possible signals, 
or enough detail in our selected signals, that algorithms have incorporated into their market re
entry strategies.12 

VI. Conclusion 

We have defined many of the types of latency observed in financial markets and offered a 
model of one form:  message origination latency. Our model relies on several assumptions, the 
most important being that the signals which generate a new order are based on data observed 
within the market of a specific commodity. We also assumed that the process leading up to a new 
order decision began after receiving an exit signal from the market. Based on these assumptions, 
we estimated models of message origination latency with market-based covariates for both 
algorithmic- and manual-entry proprietary traders. The results suggest that our market-based 
covariates are better at explaining the variation for manual-entry than algorithmic participants. 

11 This argument may differ by strategy. A market-making program may be more likely to enter new orders after 
cancelling as it tries to restore two-sided quotes, whereas directional or more aggressive accounts may wait longer.
12 It is also possible that algorithms work in clock time, which makes event time activity less helpful in explaining 
variation in algorithmic actions. 
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